Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38676340

RESUMO

Rapid eye movement sleep (REMS) maintains brain excitability at least by regulating Na-K ATPase activity. Although REMS deprivation (REMSD)-associated elevated noradrenaline (NA) increases Na-K ATPase protein expression, its mRNA transcription did not increase. We hypothesized and confirmed both in vivo as well as in vitro that elevated mRNA stability explains the apparent puzzle. The mRNA stability was measured in control and REMSD rat brain with or without in vivo treatment with α1-adrenoceptor (AR) antagonist, prazosin (PRZ). Upon REMSD, Na-K ATPase α1-, and α2-mRNA stability increased significantly, which was prevented by PRZ. To decipher the molecular mechanism of action, we estimated NA-induced Na-K ATPase mRNA stability in Neuro-2a cells under controlled conditions and by transcription blockage using Actinomycin D (Act-D). NA increased Na-K ATPase mRNA stability, which was prevented by PRZ and propranolol (PRP, ß-AR antagonist). The knockdown assay confirmed that the increased mRNA stabilization was induced by elevated cytoplasmic abundance of Human antigen R (HuR) and involving (Phospholipase C) PLC-mediated activation of Protein Kinase C (PKC). Additionally, using cell-impermeable Enz-link sulfo NHS-SS-Biotin, we observed that NA increased Na-K ATPase α1-subunits on the Neuro-2a cell surface. We conclude that REMSD-associated elevated NA, acting on α1- and ß-AR, increases nucleocytoplasmic translocation of HuR and increases Na-K ATPase mRNA stability, resulting in increased Na-K ATPase protein expression. The latter then gets translocated to the neuronal membrane surface involving both PKC and (Protein Kinase A) PKA-mediated pathways. These findings may be exploited for the amelioration of REMSD-associated chronic disorders and symptoms.

2.
Neuropharmacology ; 247: 109861, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331315

RESUMO

Sleep is an instinct behavior, and its significance and functions are still an enigma. It is expressed throughout one's life and its loss affects psycho-somatic and physiological processes. We had proposed that it might maintain a fundamental property of the neurons and the brain. In that context, it was shown that sleep, rapid eye movement sleep (REMS) in particular, by regulating noradrenaline (NA), maintains the brain excitability. It was also reported that sleep-loss affected memory, reaction time and decision-making ability among others. However, as there was lack of clarity on the cause-and-effect relationship as to how the sleep-loss could affect these basic behaviors, their association was questioned and it was difficult to propose a cure or at least ways and means to ameliorate the symptoms. Also, we wanted to conduct the studies in a simpler model system so that conducting future molecular studies might be easier. Hence, using zebrafish as a model we evaluated if sleep-loss affected the basic decision-making ability, a cognitive process and if the effect was induced by NA. Indeed, our findings confirmed that upon sleep-deprivation, the cognitive decision-making ability of the prey zebrafish was compromised to protect itself by running away from the reach of the exposed predator Tiger Oscar (TO) fish. Also, we observed that upon sleep-loss the axonal arborization of the prey zebrafish brain was reduced. Interestingly, the effects were prevented by prazosin (PRZ), an α1-adrenoceptor (AR) antagonist and when the zebrafish recovered from the lost sleep.


Assuntos
Norepinefrina , Peixe-Zebra , Animais , Norepinefrina/farmacologia , Privação do Sono , Sono , Neurônios , Receptores Adrenérgicos alfa 1/fisiologia
3.
Physiol Behav ; 271: 114352, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714322

RESUMO

Rapid eye movement (REM) sleep plays a significant role in visuospatial learning and memory consolidation; however, its mechanism of action is unknown. Rapid eye movements (REMs), a characteristic active feature of REM sleep, is a potential correlate of neural processing for visual memory consolidation. The superior colliculus (SC) plays a central role in oculomotor control and spatial localization of objects in the visual field. We proposed that local reversible inactivation of the SC during post-learning sessions might interfere with REMs and negatively impact REM sleep associated consolidation of the visuospatial learnt task. Under gaseous anesthesia, bilateral cannulae aiming SC and electrodes for recording electrophysiological signals to classify sleep-waking were implanted. Following standard protocol, all rats were subjected to Morris water maze (MWM) training for 5 consecutive days followed by probe trial. After MWM training, on all except the probe test days, the rat SC were bilaterally infused with either vehicle (control, Group 1), Lidocaine hydrochloride a local anesthetic (Lox 2%, Group 2), or muscimol (Mus, GABA agonist, Group 3) and sleep-wakefulness recorded after day 1, 4, and post-probe learning sessions. Post-learning, compared to vehicle, Mus treated group significantly decreased REMs, phasic REM sleep, percent time spent in REM sleep and REM sleep frequency/hr. Also, during probe test, the escape latency was significantly increased, and the percentage time spent in the platform quadrant were significantly decreased in both, Mus and Lox 2% treated rats, while the number of platform location crossings was decreased in Mus treated group. The results showed that Lox 2% and Mus into SC reduced consolidation of visuospatial learning. The findings support our contention that SC mediated activation of REMs exerts a positive influence in processing and consolidation of visual learning during REM sleep. The findings explain the role of REMs during REM sleep in visual memory consolidation.

4.
BMC Neurol ; 23(1): 283, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507691

RESUMO

The wakefulness-sleep cycle sets the pace of our life. Sleep research examines the transition between wakefulness and sleep, its hormonal regulation, and its pathological disruption. Understanding sleep mechanisms would improve quality-of-life well beyond sleep itself. To this aim, we invite contributions for the Collection "sleep physiology and circadian rhythms".


Assuntos
Ritmo Circadiano , Sono , Humanos , Sono/fisiologia , Ritmo Circadiano/fisiologia , Vigília/fisiologia , Qualidade de Vida
5.
Sleep Med ; 110: 25-34, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524037

RESUMO

Rapid eye movement sleep (REMS) is essential for leading normal healthy living at least in higher-order mammals, including humans. In this review, we briefly survey the available literature for evidence linking cytomorphometric changes in the brain due to loss of REMS. As a mechanism of action, we add evidence that REMS loss elevates noradrenaline (NA) levels in the brain, which affects neuronal cytomorphology. These changes may be a compensatory mechanism as the changes return to normal after the subjects recover from the loss of REMS or if during REMS deprivation, the subjects are treated with NA-adrenoceptor antagonist prazosin (PRZ). We had proposed earlier that one of the fundamental functions of REMS is to maintain the level of NA in the brain. We elaborate on this idea to propose that if REMS loss continues without recovery, the sustained level of NA breaks down neurophysiologically active compensatory mechanism/s starting with changes in the neuronal cytomorphology, followed by their degeneration, leading to acute and chronic pathological conditions. Identification of neuronal cytomorphological changes could prove to be of significance for predicting future neuronal (brain) damage as well as an indicator for REMS health. Although current brain imaging techniques may not enable us to visualize changes in neuronal cytomorphology, given the rapid technological progress including use of artificial intelligence, we are optimistic that it may be a reality soon. Finally, we propose that maintenance of optimum REMS must be considered a criterion for leading a healthy life.


Assuntos
Inteligência Artificial , Sono REM , Animais , Humanos , Sono REM/fisiologia , Encéfalo/patologia , Privação do Sono/complicações , Prazosina , Mamíferos
7.
Neuropharmacology ; 237: 109621, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276957

RESUMO

The role of dopamine (DA)-ergic neurons in ventral tegmental area (VTA) in schizophrenia, depression, hallucinations have been extensively studied. Rapid eye movement sleep (REMS), the closest objective correlate of dream and hallucination, is disrupted during these psychological dysfunctions; however, it was unknown if there is any common neuronal substrate for their regulation. Interactions among locus coeruleus (LC) REM-OFF and pedunculopontine tegmentum (PPT) REM-ON neurons have been reported to regulate REMS in health and diseases. Recently we have reported that PPT neurons modulate VTA and REMS. However, although VTA-DA neurons receive projections from LC and PPT, their role in REMS regulation was unclear. We proposed that the LC and PPT might intermittently modulate VTA-DA neurons and modulate REMS. Male Wistar rats were surgically prepared and electrophysiological wakefulness-sleep-REMS recorded in chronic freely moving condition. We employed RNAi induced downregulation of tyrosine hydroxylase (TH) to evaluate the role of VTA-DA in regulating REMS. We observed that TH-knockdown in VTA decreased REMS in experimental rats, which returned to baseline upon PPT stimulation. Thus, VTA-DA neurons are activated by the REM-ON neurons to modulate REMS, the closest objectively recordable correlate of dreams. In these animals, LC stimulation altered Non-REMS and waking. Based on the findings we have discussed the role of VTA neurochemical circuitry in REMS regulation and their possible implications with REMS-associated dreaming and hallucination in health and diseases.


Assuntos
Locus Cerúleo , Sono REM , Ratos , Masculino , Animais , Locus Cerúleo/fisiologia , Sono REM/fisiologia , Dopamina/fisiologia , Área Tegmentar Ventral , Ratos Wistar , Neurônios/fisiologia , Alucinações
8.
Cell Mol Neurobiol ; 43(7): 3061-3080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37165139

RESUMO

Scaffold proteins Striatin and SG2NA assemble kinases and phosphatases into the signalling complexes called STRIPAK. Dysfunctional STRIPAKs cause cancer, cerebral cavernous malformations, etc. DJ-1, a sensor for oxidative stress, has long been associated with the Parkinson's disease, cancer, and immune disorders. SG2NA interacts with DJ-1 and Akt providing neuroprotection under oxidative stress. To dissect the role of SG2NA and DJ-1 in neuronal pathobiology, rat midbrain extracts were immunoprecipitated with SG2NA and sixty-three interacting proteins were identified. BN-PAGE followed by the LC-MS/MS showed 1030 comigrating proteins as the potential constituents of the multimeric complexes formed by SG2NA. Forty-three proteins were common between those identified by co-immunoprecipitation and the BN-PAGE. Co-immunoprecipitation with DJ-1 identified 179 interacting partners, of which forty-one also interact with SG2NA. Among those forty-one proteins immunoprecipitated with both SG2NA and DJ-1, thirty-nine comigrated with SG2NA in the BN-PAGE, and thus are bonafide constituents of the supramolecular assemblies comprising both DJ-1 and SG2NA. Among those thirty-nine proteins, seven are involved in mitochondrial oxidative phosphorylation. In rotenone-treated rats having Parkinson's like symptoms, the levels of both SG2NA and DJ-1 increased in the mitochondria; and the association of SG2NA with the electron transport complexes enhanced. In the hemi-Parkinson's model, where the rats were injected with 6-OHDA into the midbrain, the occupancy of SG2NA and DJ-1 in the mitochondrial complexes also increased. Our study thus reveals a new family of potential STRIPAK assemblies involving both SG2NA and DJ-1, with key roles in protecting midbrain from the oxidative stress.


Assuntos
Neoplasias , Doença de Parkinson , Animais , Ratos , Cromatografia Líquida , Elétrons , Mesencéfalo , Estresse Oxidativo , Espectrometria de Massas em Tandem
9.
Behav Brain Res ; 438: 114177, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36306944

RESUMO

The superior colliculus (SC) is associated with visual attention, spatial navigation, decision making, escape and approach responses, some of which are important for defence and survival in rodents. SC helps in initiating and controlling saccadic eye movements and gaze during wakefulness. It is also activated during rapid eye movement (REM) sleep associated rapid eye movements (REMs). To investigate the contribution of SC in sleep-wake behaviour, we have demonstrated that manipulation of SC with scopolamine, carbachol, muscimol, picrotoxin and MK-801 decreased the amount of REM sleep. We observed that scopolamine and picrotoxin as well as muscimol decreased REM sleep frequency. MK-801 decreased percent amount of REM sleep, however, neither the frequency nor the duration/episode was affected. The cholinergic and GABA-ergic modulation of SC affecting REM sleep may be involved in REM sleep associated visuo-spatial learning and memory consolidation, which however, need to be confirmed. Furthermore, the results suggest involvement of efferent from SC in modulation of sleep-waking via the brainstem sleep regulating areas.


Assuntos
Sono REM , Colículos Superiores , Ratos , Animais , Sono REM/fisiologia , Picrotoxina , Muscimol/farmacologia , Maleato de Dizocilpina , Ácido gama-Aminobutírico/fisiologia , Vigília/fisiologia , Escopolamina/farmacologia , Colinérgicos
10.
Brain Sci ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275513

RESUMO

Wear and tear are natural processes for all living and non-living bodies. All living cells and organisms are metabolically active to generate energy for their routine needs, including for survival. In the process, the cells are exposed to oxidative load, metabolic waste, and bye-products. In an organ, the living non-neuronal cells divide and replenish the lost or damaged cells; however, as neuronal cells normally do not divide, they need special feature(s) for their protection, survival, and sustenance for normal functioning of the brain. The neurons grow and branch as axons and dendrites, which contribute to the formation of synapses with near and far neurons, the basic scaffold for complex brain functions. It is necessary that one or more basic and instinct physiological process(es) (functions) is likely to contribute to the protection of the neurons and maintenance of the synapses. It is known that rapid eye movement sleep (REMS), an autonomic instinct behavior, maintains brain functioning including learning and memory and its loss causes dysfunctions. In this review we correlate the role of REMS and its loss in synaptogenesis, memory consolidation, and neuronal degeneration. Further, as a mechanism of action, we will show that REMS maintains noradrenaline (NA) at a low level, which protects neurons from oxidative damage and maintains neuronal growth and synaptogenesis. However, upon REMS loss, the level of NA increases, which withdraws protection and causes apoptosis and loss of synapses and neurons. We propose that the latter possibly causes REMS loss associated neurodegenerative diseases and associated symptoms.

11.
Brain Sci ; 12(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552184

RESUMO

Immune function and sleep are two normal physiological processes to protect the living organism from falling sick. There is hardly any disease in which they remain unaffected, though the quantum of effect may differ. Therefore, we propose the existence of a strong correlation between sleep (quality or quantity) and immune response. This may be supported by the fact that sleep loss modulates many of the immunological molecules, which includes interferons; however, not much is known about their mechanism of action. Sleep is divided into rapid eye movement sleep (REMS) and non-REMS. For practical reasons, experimental studies have been conducted mostly by inducing loss of REMS. It has been shown that withdrawal of noradrenaline (NA) is a necessity for generation of REMS. Moreover, NA level increases in the brain upon REMS loss and the elevated NA is responsible for many of the sleep loss-associated symptoms. In this review, we describe how sleep (and its disturbance/loss) modulates the immune system by modulating the NA level in the brain or vice versa to maintain immune functions, physiological homeostasis, and normal healthy living. The increased levels of NA during REMS loss may cause neuroinflammation possibly by glial activation (as NA is a key modulator of microglia). Therefore, maintaining sleep hygiene plays a crucial role for a normal healthy living.

12.
Neuropharmacology ; 206: 108940, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34982973

RESUMO

The interaction among the acetylcholine (ACh)-ergic REM-ON neurons in the pedunculo-pontine area (PPT), noradrenergic REM-OFF neurons in locus coeruleus (LC) and GABA-ergic neurons in the regulation of rapid eye movement sleep (REMS) have been studied in relative details; however, many questions including the role of dopamine (DA) remain unanswered. The ventral tegmental area (VTA) is rich in DA-ergic neurons, which have been implicated with schizophrenia and depression, when REMS is significantly affected. Also, some of the symptoms of REMS and these diseases are common. As the ACh-ergic REM-ON neurons in the PPT project to VTA, we proposed that such inputs might affect REMS, dreams and hallucinations. We recorded sleep-wake-REMS in freely moving, chronically prepared rats under three controlled experimental conditions. In different sets of experiments, either the ACh-ergic inputs to the VTA were blocked by local microinjection of Scopolamine (Scop) alone, or, the PPT neurons were bilaterally stimulated by Glutamate (Glut), or, the PPT neurons were stimulated by Glut in presence of Scop into the VTA. It was observed that Glut into PPT and Scop into the VTA significantly increased and decreased REMS, respectively. Additionally, PPT stimulation induced increased REMS was prevented in the presence of Scop into the VTA. Based on these findings we propose that inputs from ACh-ergic REM-ON neurons to VTA increase REMS and it could be a possible circuitry for expressions of hallucinations and dreams.


Assuntos
Neurônios Colinérgicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Tegmento Pontino/fisiologia , Sono REM/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Antagonistas Colinérgicos/farmacologia , Ratos , Escopolamina/farmacologia , Sono REM/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
13.
Neuropharmacology ; 193: 108607, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023337

RESUMO

Dreams appear intermittently during phasic rapid eye movement sleep (REMS). Although reasonable progress has been made about neuro-physio-pharmacological mechanism of appearance of REMS, appearance of dreams is a mystery. Isolated studies have reported that substantia nigra (SN) withdraws inhibition from pedunculo-pontine tegmentum (PPT) acetylcholine (ACh)-ergic REM-ON neurons to trigger REMS; some REM-ON neurons become phasically active during REMS; amygdala (Amyg), a limbic structure associated with emotions, may be related with dreaming like state; Amyg receives projections from both SN-Dopamine (DA)-ergic and PPT-ACh-ergic neurons. Collating these isolated findings, we proposed that on the background of REMS, SN-DA-ergic and PPT-ACh-ergic inputs phasically activate Amyg-neurons to manifest dreams. In the absence of better criteria, we recorded electrophysiological characteristics of REMS as the closest objective read-out for dreams in surgically prepared, chronic, freely moving rats. Microinjection of either DA-ergic or ACh-ergic agonist [Quinpirole (Qnp) or Carbachol (Carb)] bilaterally into Amyg increased, while antagonists [Haloperidol (Hal) or Scopolamine (Scop)] reduced REMS. Electrical stimulation of either bilateral SN or PPT increased REMS, which however, was prevented when stimulated in presence of Hal or Scop, respectively into the Amyg. These findings confirm and support our contention that SN-DA-ergic and PPT-ACh-ergic inputs integrate in Amyg for REMS regulation. Further, subject to confirmation in humans, we propose that on the background of REMS, some phasic PPT-ACh-ergic-REM-ON neurons intermittently trigger some neurons in Amyg, the area known to be associated with memory and emotions, causing intermittent appearance of REMS-associated dreams and in REMS behavior disorder.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Tegmento Pontino/fisiologia , Sono REM/fisiologia , Substância Negra/fisiologia , Vigília/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Carbacol/farmacologia , Neurônios Colinérgicos , Estimulação Elétrica , Haloperidol/farmacologia , Masculino , Tegmento Pontino/efeitos dos fármacos , Quimpirol/farmacologia , Ratos , Ratos Wistar , Escopolamina/farmacologia , Sono REM/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Vigília/efeitos dos fármacos
14.
J Neurosci Res ; 99(7): 1815-1834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819353

RESUMO

Rapid eye movement sleep (REMS) favors brain development and memory, while it is decreased in neurodegenerative diseases. REMS deprivation (REMSD) affects several physiological processes including memory consolidation; however, its detailed mechanism(s) of action was unknown. REMS reduces, while REMSD elevates noradrenaline (NA) level in the brain; the latter induces several deficiencies and disorders, including changes in neuronal cytomorphology and apoptosis. Therefore, we proposed that REMS- and REMSD-associated modulation of NA level might affect neuronal plasticity and affect brain functions. Male albino rats were REMS deprived by flower-pot method for 6 days, and its effects were compared with home cage and large platform controls as well as post-REMSD recovered and REMS-deprived prazosin (α1-adrenoceptor antagonist)-treated rats. We observed that REMSD reduced CA1 and CA3 neuronal dendritic length, branching, arborization, and spine density, while length of active zone and expressions of pre- as well as post-synaptic proteins were increased as compared to controls; interestingly, prazosin prevented most of the effects in vivo. Studies on primary culture of neurons from chick embryo brain confirmed that NA at lower concentration(s) induced neuronal branching and arborization, while higher doses were destructive. The findings support our contention that REMSD adversely affects neuronal plasticity, branching, and synaptic scaffold, which explain the underlying cytoarchitectural basis of REMSD-associated patho-physio-behavioral changes. Consolidation of findings of this study along with that of our previous reports suggest that the neuronal disintegration could be due to either withdrawal of direct protective and proliferative role of low dose of NA or indirect effect of high dose of NA or both.


Assuntos
Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Norepinefrina/metabolismo , Privação do Sono/fisiopatologia , Animais , Embrião de Galinha , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Norepinefrina/farmacologia , Ratos , Ratos Wistar
15.
Eur J Neurosci ; 53(8): 2870-2900, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33529409

RESUMO

Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Microbiota , Depressão/terapia , Diabetes Mellitus Tipo 2/terapia , Exercício Físico , Transplante de Microbiota Fecal , Humanos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Psicoterapia
16.
Neurosci Lett ; 745: 135631, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33444674

RESUMO

Flowerpot method of rapid eye movement sleep (REMS) deprivation (REMSD) has been most extensively used in experiments to decipher the functions of REMS. The most common but serious criticism of this method has been presumed stress experienced by the experimental animals. The lack of systematic studies with appropriate controls to resolve this issue prompted this study. We have compared serum corticosterone levels as a marker of stress in male rats under REMSD by the flowerpot method and multiple types of control conditions. Additionally, to maintain consistency and uniformity of REMSD among groups, in the same rats, we estimated brain Na-K ATPase activity, which has been consistently reported to increase upon REMSD. The most effective method was one rat in single- or multiple-platforms set-up in a pool because it significantly increased Na-K ATPase activity without elevating serum corticosterone level. More than one rat in multiple platform set-up was ineffective and must be avoided. Also, large platform- and recovery-controls must be carried out simultaneously to rule out non-specific confounding effects.


Assuntos
Encéfalo/metabolismo , Corticosterona/sangue , Privação do Sono/sangue , Sono REM/fisiologia , Estresse Psicológico/sangue , Animais , Biomarcadores/sangue , Masculino , Ratos , Ratos Wistar , Privação do Sono/psicologia , Estresse Psicológico/psicologia
17.
EPMA J ; 11(4): 529-549, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33240449

RESUMO

Historically and traditionally, it is known that sleep helps in maintaining healthy living. Its duration varies not only among individuals but also in the same individual depending on circumstances, suggesting it is a dynamic and personalized physiological process. It has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS). The former is unique that adult humans spend the least time in this stage, when although one is physically asleep, the brain behaves as if awake, the dream state. As NREMS is a pre-requisite for appearance of REMS, the latter can be considered a predictive readout of sleep quality and health. It plays a protective role against oxidative, stressful, and psychopathological insults. Several modern lifestyle activities compromise quality and quantity of sleep (including REMS) affecting fundamental physiological and psychopathosomatic processes in a personalized manner. REMS loss-induced elevated brain noradrenaline (NA) causes many associated symptoms, which are ameliorated by preventing NA action. Therefore, we propose that awareness about personalized sleep hygiene (including REMS) and maintaining optimum brain NA level should be of paramount significance for leading physical and mental well-being as well as healthy living. As sleep is a dynamic, multifactorial, homeostatically regulated process, for healthy living, we recommend addressing and treating sleep dysfunctions in a personalized manner by the health professionals, caregivers, family, and other supporting members in the society. We also recommend that maintaining sleep profile, optimum level of NA, and/or prevention of elevation of NA or its action in the brain must be seriously considered for ameliorating lifestyle and REMS disturbance-associated dysfunctions.

18.
Sleep Med ; 63: 29-37, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605901

RESUMO

Rapid eye movement (REM) sleep is a unique physiological process at least expressed in mammals. Its disturbance affects many psycho-somato-physiological processes including cardio-vascular-respiratory systems, brain excitability, neurogenesis, synaptic pruning, and memory consolidation. While it is altered in most neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and REM sleep behavior disorder (RBD), the detailed mechanism of inducing such action is unknown. Independent studies have reported that by clearing unwanted, dysfunctional intracellular debris, wastes, etc., autophagy maintains cellular health, integrity, and homeostasis. Abnormality in autophagy causes neuronal dysfunction including death, leading to neurodegenerative disorders. It has also been reported that by modulating noradrenaline (NA) levels, REM sleep maintains neuronal integrity and house-keeping functions of the brain. Using PUBMED, we surveyed the literature and found isolated, independent studies showing that autophagy dysfunction is associated with acute and chronic neurodegenerative and patho-physio-behavioral changes, which are also associated with REM sleep loss. We collated these scattered findings, which strongly support our contention that elevated NA associated with REM sleep loss is likely to affect autophagy in neurons, disturbing neuronal integrity and homeostasis and leading to altered brain functions and associated disorders.


Assuntos
Doença de Alzheimer/fisiopatologia , Autofagia/fisiologia , Encéfalo/fisiopatologia , Doença de Parkinson/fisiopatologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Sono REM/fisiologia , Homeostase , Humanos , Neurônios/metabolismo , Norepinefrina/metabolismo
19.
Behav Brain Res ; 376: 112169, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31442548

RESUMO

Substantia nigra (SN) is rich in dopamine (DA)-ergic and GABA-ergic neurons, which project to and receive inputs from locus coeruleus (LC) and pedunculo-pontine tegmentum (PPT) possessing REM-OFF and REM-ON neurons, respectively. Loss of DA-ergic neurons and disturbed REM sleep (REMS) are associated with Parkinson's disease, depression and REMS behavior disorder. GABA-ergic projections from SN act pre-synaptically on the noradrenaline (NA)-ergic terminals coming from the LC-REM-OFF neurons onto the REM-ON neurons in PPT and play a critical role in initiating REMS. However, it was unknown how SN neurons get activated and whether the SN-DA-ergic neurons interact with the SN-GABA-ergic neurons for REMS regulation. In freely moving chronically prepared rats, neurons in SN (bilateral) were stimulated by local microinjection of Glutamate (Glut), sparing the fibers of passage, in the presence and absence of i.p. Haloperidol (Hal, DA-antagonist). In other sets, either Hal or Bicuculine (Bic, GABA-antagonist) alone or simultaneously was microinjected bilaterally into the SN and the effects on sleep-wakefulness were recorded. We observed that Glut in SN significantly increased REMS, which was prevented by Hal. REMS was decreased and increased by Hal and Bic, respectively; while their co-injection neutralized (ineffective) the individual effects. Combining these findings with previous reports suggest that the SN-DA-ergic neurons act on the SN-GABA-ergic to regulate REMS. The results advance our understanding of the neuro-anatomo-chemical connections and pharmaco-physiological regulation of REMS in health and diseases.


Assuntos
Dopamina/metabolismo , Sono REM/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/fisiologia , Dopamina/fisiologia , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/farmacologia , Locus Cerúleo/fisiologia , Masculino , Neurônios/fisiologia , Norepinefrina/farmacologia , Ratos , Ratos Wistar , Sono/fisiologia , Substância Negra/metabolismo , Substância Negra/fisiologia , Vigília/fisiologia , Ácido gama-Aminobutírico/fisiologia
20.
Front Mol Neurosci ; 12: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837837

RESUMO

The noradrenaline (NA) level in the brain is reduced during rapid eye movement sleep (REMS). However, upon REMS deprivation (REMSD) its level is elevated, which induces apoptosis and the degeneration of neurons in the brain. In contrast, isolated studies have reported that NA possesses an anti-oxidant property, while REMSD reduces lipid peroxidation (LP) and reactive oxygen species (ROS). We argued that an optimum level of NA is likely to play a physiologically beneficial role. To resolve the contradiction and for a better understanding of the role of NA in the brain, we estimated LP and ROS levels in synaptosomes prepared from the brains of control and REMS deprived rats with or without in vivo treatment with either α1-adrenoceptor (AR) antagonist, prazosin (PRZ) or α2-AR agonist, clonidine (CLN). REMSD significantly reduced LP and ROS in synaptosomes; while the effect on LP was ameliorated by both PRZ and CLN; ROS was prevented by CLN only. Thereafter, we evaluated in vitro the effects of NA, vitamin E (Vit E), vitamin C (Vit C), and desferrioxamine (DFX, iron chelator) in modulating hydrogen peroxide (H2O2)-induced LP and ROS in rat brain synaptosomes, Neuro2a, and C6 cells. We observed that NA prevented ROS generation by chelating iron (inhibiting a Fenton reaction). Also, interestingly, a lower dose of NA protected the neurons and glia, while a higher dose damaged the neurons and glia. These in vitro and in vivo results are complementary and support our contention. Based on the findings, we propose that REMS maintains an optimum level of NA in the brain (an antioxidant compromised organ) to protect the latter from continuous oxidative onslaught.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...